
NFAs with Tagged Transitions, their Conversion to Deterministic
Automata and Application to Regular Expressions

Ville Laurikari
Helsinki University of Technology
Laboratory of Computer Science
PL 9700, 02015 TKK, Finland

vl@iki.fi

Abstract

A conservative extension to traditional nondeter-
ministic finite automata is proposed to keep track of
the positions in the input string for the last uses of se-
lected transitions, by adding ”tags” to transitions. The
resulting automata are reminiscent of nondeterministic
Mealy machines. Formal semantics of automata with
tagged transitions is given.

An algorithm is given to convert these augmented
automata to corresponding deterministic automata,
which can be used to process strings efficiently. Ap-
plication to regular expressions is discussed, explaining
how the algorithms can be used to implement for exam-
ple substring addressing and a lookahead operator, and
some informal comparison to other widely used algo-
rithms is done.

1. Introduction

The methods of translating regular expressions to
deterministic finite automata are well known [1, 6, 11].
The resulting automata are able to distinguish whether
or not a given string belongs to the language defined
by the original regular expression. However, it is not
possible to, for example, tell the position and extent
of given subexpressions of the regular expression in a
matching string.

Algorithms do exist for solving the problem de-
scribed above, but the widely used ones usually require
simulating the operations of an NFA while processing
an input string and most are interpretive backtrack-
ing algorithms which take polynomial or exponential
worst-case time, non-constant space, or some combi-
nation of these. For example, the GNU regexp-0.12
library consumes time exponentially on the regular ex-

pression (v*)*|j* with input vvvvv . . . j. With an
input of about 25 characters the matching takes tens
of seconds on a modern workstation.

Nakata and Sassa [8] have proposed a way of adding
semantic rules to regular expressions and converting
them to deterministic automata, but their algorithms
do not resolve ambiguity and cannot handle situations
where more than one application of the same semantic
rule can be postponed at the same time.

Of course, using an attribute grammar and a parser
generator is an option if speed is not essential. The
automata-based approach is simpler and thus faster by
up to several orders of magnitude, and in many cases
more intuitively understandable for the user. For even
simple regular expressions, several productions may be
necessary to express the equivalent language. [8]

I propose here an extension to traditional NFAs,
tagged transitions, which allow us to store sufficient
information of the path taken by the automaton while
matching so that subexpression matching information,
in the style of, for example POSIX.2 regexec, can be
extracted with minimal work. We give an algorithm
for converting these augmented NFAs to deterministic
automata which can be used to process strings under
a linear time bound and more importantly, using an
efficient and simple matcher loop reminiscent of tradi-
tional DFA engines.

This paper is organized as follows: Section 2 intro-
duces the concept of tagged transitions along with a
a formal description of their semantics. Section 3 de-
scribes the conversion from NFAs with tagged transi-
tions to deterministic automata, and section 4 gives an
algorithm for doing the conversion. Section 5 discusses
application of the algorithms to regular expressions.
The less technical reader may only skim through the
next section and then skip right to section 5.

2. NFAs with tagged transitions

NFAs with tagged transitions, or TNFAs, are similar
to normal NFAs except that the transitions may have a
tag attached to them. Such transitions are called tagged
transitions. Tags are of the form tx, where x is an
integer. Each tag has a corresponding variable which
can be set and read, and when a tagged transition is
used, the current position in the input string is assigned
to the corresponding variable.

If a tag is unused, it has a special value, −1; initially
all tags are unused and have this value. We use the
same symbol for the tag and its variable, so if we use,
say, t5 as a tag, it implies the existence of the variable
t5. Figure 1 shows how tagged transitions are marked
in a graph. For untagged transitions, ω is used to de-
note that there is no tag. Usually the /ω is omitted
from graphs so that a/ω becomes a and ε/ω becomes
ε.

TNFAs are reminiscent of nondeterministic Mealy
transducers, but we are interested in a single path
which results in a final state with a given input string,
and want to know, in addition to which tags have been
used, the places in the input string where they were
last used.

ε/t0
0 1

Figure 1. A tagged transition

Definition 1. A TNFA is a 5-tuple M =
(K,T,Σ,∆, s, F), where

K is a finite set of states,

T is a finite set of tags, ω ∈ T ,

Σ is an alphabet, i.e. a finite set of symbols,

∆ is the prioritized tagged transition relation, a
finite subset of K × Σ∗ × T × r ×K, where r ∈ N
is unique for all items of the relation.

s ∈ K is the initial state,

F ⊆ K is the set of final states

The meaning of a quintuple (q, u, t, r, p) ∈ ∆ is that
M , when in state q, may consume a string u from the
input string, set the value of t to the current position
in the input string and enter state p. The meaning of
r, the priority of the transition, is explained later in
this section.

A configuration of M is an element of K×Σ∗×Σ∗×
V ×r, where the first item is the current state, the sec-
ond item is the processed part of the input string, the
third item is the unprocessed part of the input string, V
is a function from T to N, i.e. from tags to their values
and r ∈ N is the priority of the last used transition. The
relation `M between configurations (yields in one step)
is defined as follows: (q, p, u, v, r) `M (q′, p′, u′, v′, r′)
if and only if there are w ∈ Σ∗, r′ ∈ N and t ∈ T such
that u = wu′ and (q, w, t, r′, q′) ∈ ∆. Then p′ = pw
and

v′(x) =
{
|p′| if t 6= ω and x = t
v(x) otherwise.

We define `∗M to be the reflexive, transitive closure of
`M . A string w ∈ Σ∗ is accepted by M if and only if
there is a state q ∈ F , a function v and integer r such
that (s, ε, w, T × {−1}, 0) `∗M (q, w, ε, v, r).

Note that the last item of a configuration, the pri-
ority of the last used transition, is not really needed
and could be omitted. The input string parts are not
strictly necessary, either. Read on to see why they are
nevertheless included.

For a particular string w and a machine M , there
may be several different q, v and r which satisfy
(s, ε, w, T × {−1}, 0) `∗M (q, w, ε, v, r). In order for the
results of the computation to be predictable and thus
more practical, we must somehow be able to determine
which particular values of q, v and r we choose as the
result.

To choose between different q, we can simply assign
each final state a unique priority and choose the one
with the highest priority. This is basically what lexi-
cal analyzers typically do when two or more patterns
match the same lexeme.

To choose between different v and r (tag value am-
biguity), we must define another relation |=M between
configurations (yields tag-wise unambiguously in one
step): (q, p, u, v, r) |=M (q′, p′, u′, v′, r′) if and only if
there are w ∈ Σ∗, r′ ∈ N and t ∈ T such that

u = wu′, (q, w, t, r′, q′) ∈ ∆ and

for every q′′, p′′, u′′, v′′, r′′, v′′′ and r′′′ such that
(s, ε, pu, T × {−1}, 0) |=∗M (q′′, p′′, u′′, v′′, r′′) and
(q′′, p′′, u′′, v′′, r′′) `M (q′, p′, u′, v′′′, r′′′) it holds
that r′ ≤ r′′′.

Then p′ = pw and

v′(x) =
{
|p′| if t 6= ω and x = t
v(x) otherwise.

As before, |=∗M is the reflexive, transitive closure of
|=M . A string w ∈ Σ∗ is tag-wise unambiguously ac-
cepted by M if and only if there is a state q ∈ F , a func-

tion v and integer r such that (s, ε, w, T ×{−1}, 0) |=∗M
(q, w, ε, v, r).

Note that while the above definition is recursive,
it is still possible to calculate |=∗M effectively, using a
non-recursive process, for a given automaton and input
string.

For a particular string w and a machine M , if w
is accepted by M , it is also tag-wise unambiguously
accepted with uniquely determined v and r.

3. Converting TNFA to corresponding
deterministic automata

There are many ways of simulating the operations of
a TNFA deterministically. The main differences are in
the simulation mechanisms, i.e. whether and how much
backtracking is used, and how the sets of possible tag
values are handled during matching. The reasonable
deterministic matchers use O(|w|) time and O(1) space,
where w is the string to be processed. Performing un-
der an O(|w|) time bound means that a backtracking
algorithm cannot used.

As with traditional finite automata, the usual time-
space tradeoffs apply; converting a TNFA into a deter-
ministic automaton may take a lot of time, but needs
to be done only once, and the resulting automaton can
process characters very fast. A deterministic automa-
ton may also take much more space to store than a cor-
responding nondeterministic automaton, and time and
space can be wasted into computing transitions that are
never used. Simulating a TNFA takes less space, but is
slower than with a deterministic automaton. Finally,
the lazy transition evaluation approach can be used,
where a deterministic automaton is constructed tran-
sition by transition as needed, possibly keeping only a
limited amount of previously calculated transitions in
a cache.

Before going further, we need some definitions. For
saving possible tag values during TDFA operation we
use finite maps (or functions), one per tag. The map
for tag tx is mx. The values of maps are are set with
operations of the form mi

x ← k, which assign the value
of k to mi

x. The subscript is the tag identifier, the
superscript is the index to the map. Writing mi

x ← k
is thus just a shorthand for writing

m′x(j) =
{
k if j = i
mx(j) otherwise,

and then letting mx = m′x.
Sometimes we will need the tag value mappings to

be reordered. We use a similar notation for this, for
example m0

0 ← m1
0 will set the value of m1

0 to m0
0.

Also, we define C to be the set of all possible lists
of reordering commands and assignment commands of
the form mi

x ← k, and define the variable p, which
always contains the number of read input symbols, i.e.
the current position in the input string.

Definition 2. A TDFA is a 7-tuple M = (K, Σ, δ, s,
F , c, e), where

K is a finite set of states,

Σ is an alphabet, i.e. a finite set of symbols,

δ is the transition function, a function from K×Σ
to K × C

s ∈ K is the initial state,

F ⊆ K is the set of final states,

c ∈ C is the initializer, a list of commands to be
executed before the first symbol is read, and

e ∈ F×C is the set of finishers, a list of commands
to be executed after the last symbol is read. Each
final state has its own finisher list.

The algorithm for converting TNFAs to correspond-
ing deterministic automata has the same basic principle
as the subset construction algorithm used to convert
traditional NFAs to traditional DFAs: it enumerates
all possible situations which may occur when the non-
deterministic automaton consumes an input string. Of
course, all possible tag values cannot be enumerated
finitely. Fortunately, it is not necessary, all we need
to keep track of is where tag values are stored, the ac-
tual values can be ignored, and incremental changes to
the stored value sets can then be made in the TDFA
transitions.

3.1. A small example

0

a0 a2

1
a3ε1/t0

2

Figure 2. An example TNFA

We present the algorithm first by means of a sim-
ple example, and pseudo code will follow in the next
section. The example TNFA is shown in figure 2. The
priorities of the literals are marked with superscript

integers. The TNFA corresponds to the POSIX.2 left-
most matching regular expression (a*)a*a so that t0
gives the extent of the parenthesized subexpression.

Now we begin to generate the TDFA, the first step is
to find the initial state. The initial state of the TNFA is
0, and there is a tagged ε-transition from 0 to 1, so fol-
lowing the definition of |=∗M in the previous section, the
TNFA can stay in state 0 (|=∗M is reflexive) or use t0 and
enter state 1 (because (0, w, ε, v, x) |=M (1, w, ε, v′, 1)
for any w, v, v′ and x). Since the tag could be used,
we need to save the current position in the input string.

From these considerations we form the initial state
of the TDFA: {(0, {}), (1, {m0

0})} and the initialization
list: [m0

0 ← p]. TDFA states are represented as sets
of pairs (s, t), where s is a TNFA state and t is a set
of map items, pointing to the map locations where tag
values are stored. If a tag is not present in a map item
set, the value of the tag is −1. This particular state can
be interpreted to mean that a TNFA can be either in
state 0 (no tags used), or in state 1 with m0

0 containing
the value of t0. We give the initial state the number 0
as a shorthand.

Next, when the symbol a is read, the TNFA can
choose any of the following actions:

• move from (0, {}) to 0

• move from (0, {}) to 0, and then move to 1 using
t0

• move from (1, {m0
0}) to 1

• move from (1, {m0
0}) to 2

From this we get the second state of the TDFA:
{(0, {}), (1, {m1

0}), (1, {m0
0}), (2, {m0

0})}. Note the
itemm1

0; the position for the second usage of t0 is stored
in the second item in the map, since we do not want to
overwrite the previously stored value, as it may still be
needed. Also notice that there are two possible ways
the TNFA could have reached state 1: either by using
t0 before reading the symbol, or after it. The value
of t0 could be 0 or 1, respectively, so the situation is
ambiguous.

Ambiguities like this are resolved by taking use of
the priorities we have assigned for the transitions of
the TNFA, following the definition of |=∗M in the last
section. In this case, (1, {m1

0}) is prioritized over
(1, {m0

0}), since the latter state is reached by taking
a lower-priority transition last. To resolve the ambigu-
ity, we simply remove all but the highest priority item
from the set, and the TDFA state becomes {(0, {}),
(1, {m1

0}), (2, {m0
0})}. We give this state the number

1. Since a new occurrence of the tag, m1
0, is introduced

in this state, the current position must be saved again

with m1
0 ← p. So, we add to our TDFA’s transition

function the entry δ(0, a) = (1, [m1
0 ← p]).

Finally, we notice that the state contains the TNFA
state number 2, which is a final state. Thus, state
number 1 in our TDFA is also final. If the input string
ends when the TDFA is in this state, the TNFA would
have to be in state 2 in order to produce a match. To
give tags their correct values in this situation, we add
the item (1, [t0 ← m0

0]) to the finisher set.
When the symbol a is read in this state, the TNFA

can choose any of the following actions:

• move from (0, {}) to 0

• move from (0, {}) to 0, and then move to 1 using
t0

• move from (1, {m1
0}) to 1

• move from (1, {m1
0}) to 2

In the same way as before, we get the state {(0, {}),
(1, {m2

0}), (2, {m1
0})}, and the command m2

0 ← p. Now
comes the tricky part: since it does not matter what
values the tags actually have, we can freely move the
values in the maps behind different keys if we reflect
the changes to the TDFA state, too. In this particular
situation, the map indices may all be subtracted by one,
and the resulting state is the same as state 1. Thus, we
add the transition δ(1, a) = (1, [m0

0 ← m1
0, m1

0 ← p])
to the transition function.

Now there is nothing more to do and our TDFA is
complete. It is depicted in figure 3. The finisher for
state 1 is drawn as an arrow which leaves state 1 but
enters no other state. The reader may wish to verify
that the TDFA indeed matches the same language and
always produces the same value for t0 as the original
TNFA.

a/ m0
0 ← m1

0

0 1 end

m1
0 ← p

a/m1
0 ← p t0 ← m0

0

m0
0 ← p

Figure 3. A TDFA corresponding to the TNFA
in figure 2

In the next section an algorithm is given for doing
this kind of conversions for arbitrary TNFAs mechani-
cally.

4. The conversion algorithm

The reach procedure below takes as arguments a
TDFA state t which is a set of pairs (state, tags) in S,
where state is a TNFA state, and tags is a set of map
items mi

n which tell where tag values are stored. The
other argument is an input symbol a. The procedure
calculates which states can be reached from the states
in t using a transition labelled with a, and returns the
result as a set of pairs like t.

Note that when map items of the form mn
i are used

here, and in the other two procedures, they do not refer
to any values, but act as symbolic names for the places
where the actual tag values are stored.

reach(t, a)
r ← empty list
for each transition from u to some state u′ labelled

with a, such that (u, k) ∈ t for some k do
add (u′, k) to r

return r

The tε closure procedure below takes as argument
a set of pairs, and calculates which states are tag-wise
unambiguously reached from the given states, and re-
turns the result as set of pairs (u, k), where u is a TNFA
state and k is a set of map items.

tε closure(S)
for each (u, k) ∈ S do

push (u, 0, k) to stack
initialize closure to S
while stack is not empty

pop (s, p, k), the top element, off of stack
for each ε-transition from s to some state u do

if the ε-transition was tagged with tn then
if ∃m : mm

n ∈ k then
remove mm

n from k
add mx

n to k, where x is the smallest
nonnegative integer such that mx

n does not
occur in S

if ∃p′, k′ : (u, p′, k′) ∈ closure and p < p′ then
remove (u, p′, k′) from closure

if (u, p, k) /∈ closure then
add (u, p, k) to closure
push (u, p, k) onto stack

remove the middle element, the priority, from all
triples in closure
return closure

The next procedure is the main conversion algo-
rithm, and is basically just the subset construction
(see for example [1] page 118) modified for tagged au-
tomata.

TNFA to TDFA()
i← tε closure(s)
for each map item m0

n in i
add m0

n ← p to the initializer
add i as an unmarked state to states
while there is an unmarked state t in states do

mark t
for each input symbol a do

u← tε closure(reach(t, a))
c← empty list
for each map item mi

n in u do
if mi

n is not in k then
append mi

n ← p to c
if there is a state u′ ∈ states such that u can

be converted to u′ with a series of reordering
commands R then
append R to c

else
u′ ← u
add u′ as an unmarked state to states

δ(t, a) = (u′, c)
if u′ contains a final state then

choose the smallest state and set the finisher
of u′ correspondingly

For simplicity, the above algorithm assumes that
only ε-transitions can be tagged, if more than one tran-
sition lead to the same state they are all ε-transitions
and that there are no transitions with strings longer
than one symbol. Any TNFA can be easily modified
without changing its behavior to follow the above re-
strictions, so generality is not lost here.

Once the algorithm is understood, it is not difficult
to see that it always terminates. In the following some
fairly simple theorems and proofs are given:

Theorem 1. The algorithm generates a finite amount
of TDFA states for any TNFA.

Proof. There are only a finite amount of TNFA states.
A TDFA state can have only one item for each TNFA
state, so letting T denote the number of states in the
TNFA, for any TDFA state S it holds that |S| ≤ T .
There are also a finite amount of different tags, because
there are a finite amount of transitions. Furthermore,
in any map item set there is at most one item per tag.
From these it follows that there can be at most as many
used items in any map as there are states in the TNFA.
Thus, there are a finite amount of possible map item
sets, and therefore a finite amount of possible TDFA
states. 2

As a consequence of theorem 1, the algorithm always
terminates.

Theorem 2. A TDFA generated from a TNFA with
the algorithm processes an input string s in O(|s|) time.

Proof. The TDFA is deterministic and the amount of
operations for all transitions is constant during opera-
tion. The theorem immediately follows. 2

Perhaps a more interesting result is the following,
which assumes that a reorder of n items takes n oper-
ations:

Theorem 3. The maximum amount of operations as-
sociated with any TDFA transition generated with the
algorithm is s × t, where s in the amount of states in
the original TNFA and t is the amount of different tags
in the TNFA.

Proof. First we note that the algorithm obviously cre-
ates at most one mn

a ← p operations per tag per tran-
sition, so they account for at most t operations per
transition. Also, at most s reordering operations per
tag per transition need to be made, since there are at
most s used items in any map at any time and they can
be permuted in any order with s operations. There are
t maps, so there can be at most s×t operations for any
transition. 2

It should be noted that better theoretic upper
bounds for operations per transition could be reached
by using more elaborate mechanisms for storing tag val-
ues. The constant factors involved with more compli-
cated methods far outweigh the theoretical maximum
amount in practice, so that simple solutions are usu-
ally better. Using deletion relaxed queues with unidi-
rectional flow would yield an upper bound of O(t2) for
work per transition and a slight penalty in the num-
ber of TDFA states, but in practice the penalty will be
small and the work will be very near O(t), except in
pathological cases.

Simply leaving out all reordering operations a max-
imum of t operations per transition can be easily
achieved. Doing this will blow up the amount of states
in the TDFA to be O(s!) for all but the simplest cases,
which is not acceptable for most uses.

5. Applications

TNFAs behave very similarly to ordinary NFAs, so
that many of the applications of NFAs can be readily
adapted for TNFAs while still retaining the advantage
of using tags. As the primary motivation for my work
on TNFAs was using them with regular expressions,
they are what this section mostly considers.

5.1. Regular expressions with tags

Thompson’s construction (see for example [1] pages
122–125) can be used to create NFAs from regular ex-
pressions. To make use of tags, we give the symbol tx
a special meaning: instead of being interpreted as a
literal symbol, an ε-transition with tag tx is created.

For example, say we want to match a string of one or
more digits, followed by any number of characters, and
want to know where the last digit was without having
to scan the first part of the string again. We can use
the tagged regular expression [0-9]*t0[a-z]*, and the
value of t0 tells us the index of the first character after
a successful match.

Consider the regular expression (a|b)*t0b(a|b)*,
and the input string abba. Clearly this is ambiguous,
and t0 has two possible values, 1 or 2. To resolve this
ambiguity, we may choose to prefer the leftmost match,
that is, input symbols are matched as much as possible
to the left in the regular expression. In this case, the
first a and b would be matched by the first part of
the regular expression (to the left of t0), and second b
and a would be matched by the part after t0. Thus, t0
would get the value 2.

In the case of automata generated with this ex-
tended Thompson’s construction from regular expres-
sions, the places where ambiguity may arise are as fol-
lows:

• The state where the two subautomata of a union
are combined. Either the left subexpression or the
right subexpression must be preferred.

• The last state of the subautomaton of a repeated
subexpression, and the state where the looping ε-
transition leads to. Either zero repetitions or one
or more repetitions must be preferred.

To follow, for example, POSIX.2 regexec seman-
tics, the left subexpression should always have higher
priority than the right, and thus also zero repetitions
should be preferred over one or more repetitions (while
still searching for the longest match). If the semantics
need to be changed, the automaton method is prob-
ably more flexible than a backtracking algorithm, be-
cause the matching algorithm or automaton generator
itself need not be modified, just the input data or the
Thompson’s construction phase, which is fairly sim-
ple. For example, to get the rightmost match instead
of the leftmost match, choosing exactly the opposite
preferences is enough. It is further possible to use, for
example, rules which apply to individual characters in-
stead of whole subexpressions by giving each literal a
unique priority and propagating them to the decision
transitions listed above.

Tags also provide a mechanism to implement the
lookahead operator / in the style of Lex [5] and Flex
[10], so that the regular expression abc/def matches
abc only when followed by def, but def is not part
of the matched string. According to Appel [2], Lex
uses an incorrect algorithm described by Aho et al.
[1], which fails, for example, on (a|ab)/ba with input
aba, matching ab where it should match a. Flex uses
a better mechanism which works in the above case,
but fails with a warning message on zx*/xy*. Using
a tag in place of / to tell the length of the match the
lookahead operator can be implemented correctly.

Regular expressions with tags can be used virtu-
ally everywhere where normal regular expressions can
be used. These applications include lexical analyzers,
parsers for grammars with regular right parts and a
multitude of other things. I have implemented a reg-
ular expression matching and searching library and a
lexical analyzer library which support tags.

5.2. Searching for matching substrings

We introduce the any-symbol, •, to the syntax of
our regular expressions. With this, it is easy to specify
the language which contains all strings which contain
some substring specified by a regular expressions. For
example, if we want to recognize strings which contain
a substring which matches the regular expression R,
we can use •*R. If we give the •-loop a lower priority
than any other transition and add a tag to mark the
position where the matching substring begins, after the
first loop, we have a working solution. [7]

We need to ensure, though, that the implementa-
tion does something reasonable. Usually searching is
defined so that it finds the first and longest match-
ing substring, which is reasonable in most applications.
Matching, on the other hand, is usually defined so that
it finds the longest matching prefix of the string. If
we simply use the matching procedure as-is for search-
ing, we end up finding the last and longest matching
substring, instead of the first and longest.

The automata generated for searching are equiva-
lent to the Knuth-Morris-Pratt pattern-matching algo-
rithm, only so that instead of fixed strings, arbitrary
regular expressions can be used. This means that we
have also automatically a searching algorithm equiva-
lent to the Aho-Corasick algorithm for searching sev-
eral fixed string patterns simultaneously. And, when
we use TNFAs, the searching algorithm is further ex-
tended to support substring addressing with the use of
tags. [7, 12]

Of course, the method for searching matching sub-
string stated here is not the most efficient one, and it

is possible to achieve sublinear expected time for any
regular expression, even logarithmic expected time, if
preprocessing of the text to be searched is allowed using
the algorithms developed for regular expressions by R.
Baeza-Yates [4, 3], or in the case of regular grammars
by B. W. Watson [13, 14].

6. Conclusions

I have described an efficient way to match regular
languages and extract last points of use for selected
transitions in a single pass. The algorithms are used in
a regular expression matching and search library, and
a lexical analyzer library, for a high-level, functional
prototype language called Shines [9] which is being de-
veloped in a research project joint between Helsinki
University of Technology and Nokia.

The main reason why we did not settle for existing
libraries is that Shines is real-time but existing libraries
are not. Speed is essential for us, so an exponential
time backtracking algorithm was not a viable option,
even though the pathological cases are rare in practice.

It has been claimed that it is easier to write a back-
tracking matcher than an automaton based one. This
claim is contrasted by my experience with writing the
TNFA to TDFA compiler; it probably would have been
easier to write a backtracking matcher, but it was much
easier to be sure that the automaton based matcher
does what it is supposed to do and it is easier to un-
derstand what it does and why.

I tested the library by generating pseudo-random
regular expressions and strings which should or should
not match. The regular expressions and strings were
fed to existing matchers and the TDFA matcher. I im-
mediately discovered numerous bugs and performance
problems in the GNU regexp-0.12 library, and two bugs
in the GNU rx-1.8a library. Both libraries are widely
used.

It is still an open problem whether the backrefer-
ence operator, defined for example in POSIX.2, can be
incorporated into the TNFA method of regular expres-
sion matching. Having a backreference operator means
moving out of the realm of regular languages, which
has proved to be a nuisance for many regexp package
implementors.

References

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley,
1986.

[2] A. W. Appel. Modern Compiler Implementation in
Java. Cambridge University Press, 1999.

[3] R. A. Baeza-Yates and G. H. Gonnet. Efficient
text searching of regular expressions. In G. Ausiello,
M. Dezani-Ciancaglini, and S. R. D. Rocca, editors,
Proceedings of the 16th International Colloquium on
Automata, Languages and Programming, volume 372
of LNCS, pages 46–62, Berlin, July 1989. Springer.

[4] R. A. Baeza-Yates and G. H. Gonnet. Fast text search-
ing for regular expressions or automaton searching on
tries. ACM, 43(6):915–936, Nov. 1996.

[5] M. Lesk. Lex — a lexical analyzer generator. Technical
Report 39, Bell Laboratories, Murray Hill, NJ, 1975.

[6] H. R. Lewis and C. H. Papadimitrou. Elements of the
Theory of Computation. Prentice Hall, 1981.

[7] I. Nakata. Generation of pattern-matching algorithms
by extended regular expressions. Advances in Software
Science and Technology, 5:1–9, 1993.

[8] I. Nakata and M. Sassa. Regular expressions with se-
mantic rules and their application to data structure
directed programs. Advances in Software Science and
Technology, 3:93–108, 1991.

[9] K. Oksanen. Real-time Garbage Collection of a Func-
tional Persistent Heap. Licentiates Thesis, Helsinki
University of Technology, Faculty of Information Tech-
nology, Department of Computer Science, 1999. Also
available at http://hibase.cs.hut.fi/.

[10] V. Paxson. Flex — Fast Lexical Analyzer Generator.
Lawrence Berkeley Laboratory, Berkeley, California,
1995. ftp://ftp.ee.lbl.gov/flex-2.5.4.tar.gz.

[11] S. Sippu and E. Soisalon-Soininen. Languages and
Parsing, volume 1 of Parsing Theory, pages 65–113.
Springer, 1988.

[12] G. A. Stephen. String Searching Algorithms, volume 3
of Lecture Notes Series on Computing. World Scientific
Publishing, 1994.

[13] B. Watson. Implementing and using finite automata
toolkits. Journal of Natural Language Engineering,
2(4):295–302, Dec. 1996.

[14] B. Watson. A new regular grammar pattern matching
algorithm. In J. Diaz and M. Serna, editors, Proceed-
ings of the European Symposium on Algorithms, vol-
ume 1136 of Lecture Notes in Computer Science, pages
364–377, Berlin, Sept. 1996. Springer.

	. Introduction
	. NFAs with tagged transitions
	. Converting TNFA to corresponding deterministic automata
	. A small example

	. The conversion algorithm
	. Applications
	. Regular expressions with tags
	. Searching for matching substrings

	. Conclusions

